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Quantum transport through resistive nanocontacts: Effective one-dimensional theory and
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We introduce a quantum transport formalism based on a map of a real three-dimensional lead-conductor-lead
system into an effective one-dimensional (1D) system. The resulting effective 1D theory is an in principle exact
formalism to calculate the conductance. Besides being more efficient than the principal layers approach, it
naturally leads to a five-partitioned workbench (instead of three) where each part of the device (the true central
device, the ballistic and the nonballistic leads) is explicitely treated, allowing better physical insight into the
contact resistance mechanisms. Independently, we derive a generalized Fisher-Lee formula and a generalized
Meir-Wingreen formula for the correlated and uncorrelated conductance and current of the system where the

initial restrictions to ballistic leads are generalized to the case of resistive contacts. We present an application

to graphene nanoribbons.
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I. INTRODUCTION

The problem to describe nanoscale electronic transport!-?
from first principles still remains a formidable challenge. Al-
though powerful formalisms have been developed in the last
years*> the cornerstone is still represented by an efficient
coupling between electronic structure theories with appropri-
ate modeling of the quantum transport problem.®’ In the
framework of the Kubo formalism!? very efficient methods,
such as the Mayou, Khanna, Roche, and Triozon (MKRT)
approach,® have allowed a wealth of applications even to
technological systems.’ The Landauer formalism and its non-
equilbrium Green’s functions theory (NEGF) extension'? re-
cently witnessed more intense developments, which have led
to the setup of a standard model, often referred as principal
layers approach.? In this approach, the workbench model is
assumed to be a three-partitioned system'® constituted by a
central region sandwiched between two semi-infinite leads.
The latter, assumed ballistic and at partial equilibrium, only
inject and harvest electrons into the central region where all
the processes affecting the conductance are assumed to take
place. Those typically include contact resistance, scattering
by impurities and defects, incoherent transport electron-
electron and electron-phonon scatterings. Once provided the
electronic structure of the system by an appropriate (ab initio
or semiempirical) theory, the consecutive quantum transport
problem can be solved by e.g. the calculation of the Green’s
function of the central region in presence of the effect of the
leads, represented by the self-energies of semi-infinite peri-
odic systems. The conductance can then be calculated via the
Fisher-Lee or the Meir-Wingreen formulas? involving the
Green’s function and the leads injection rates.

One may notice that in this standard model the separation
between the central region and the ballistic leads appears
somehow arbitrary and unphysical. Indeed, in order to cor-
rectly describe the contact resistance, the central region
should contain not only the conductor under study (e.g., a
molecule or a nanodevice), but also some layers in reality
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belonging to the leads. Convergence should be checked by
increasing the central region size and thus the number of
states in the problem. Its computational resolution is heavier
since it deals with a number of channels much greater than
the true channels of the central device.

In this work, we introduce the notion of effective channels
as the states through which the current flows up to the central
device. The number of these channels is upper bounded by
the number of states of the central bottleneck. All the leads’
states orthogonal to the states of the effective channels do not
effectively participate to the conductance and can be safely
disregarded, acting as a prefiltering of the initial problem.
This is a considerable simplification with respect to the prin-
cipal layers, where the number of the channels is usually
much greater than the number of channels in the device. The
numerically efficiency is consequently much improved.
Moreover, the effective channels can be viewed as associated
to an effective one-dimensional (1D) system into which the
real three-dimensional (3D) physical system is mapped (Fig.
1). This is a way to restore the natural dimensionality of the
quantum transport problem, which is truly 1D. The resulting
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FIG. 1. (Color online) Mapping of a real 3D device (top: hydro-
gen molecule in between gold leads) into the effective 1D system
(bottom: effective atomic chain). The effective channels arise from
the central device (here the hydrogen molecule) and pursue into a
nonballistic section (blue, violet, and red pseudoatoms), until they
achieve an asymptotic ballistic behaviour (yellow).
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FIG. 2. (Color online) The conductance can be calculated by the
traditional Fisher-Lee formula and three-partitioned workbench,
with ballistic leads and extended (molecule+nonballistic leads)
central region (scheme above); or the generalized Fisher-Lee for-
mula and the five-partitioned workbench, with central device, non-
ballistic, and finally ballistic sections of the effective channels
(scheme below).

1D effective theory is an in principle exact formalism to
calculate the conductance. The main advantages of the 1D
approach are,

(i) It is formally exact, and its numerical implementation
requires no approximation.

(ii) Tt reduces the size of the numerical problem.

(iii) It is particularly efficient for nanocontacts.

(iv) The calculation scales as Nyo X N2oneie With Ny, the
full size of the initial Hamiltonian and N .01 the number of
effective channels.

(v) It is independent from the level of theory used to
calculate the electronic structure, whether with or without
correlation. It relies on the preliminary knowledge of the
Hamiltonian and eventual interaction self-energies.

(vi) It is independent from the type of basis set used in the
previous electronic structure calculation.

Indeed, the formalism only requires a complete N pinnels
set of independent states ¢i. localized at the bottleneck, as
well as how H acts on states, as implemented in common
density-functional theory (DFT) codes. Afterwards, there is
absolutely no requirement on the basis set that can be atomic
orbitals, Wannier functions, nonorthogonal or nonmaximally
localized, even plane waves. In fact, another important result
of this formalism is that it proposes its own recursion states
basis as the best suited to solve the quantum transport prob-
lem.

Present limitations and drawbacks of the approach are,

(i) It has one step more (the recursion) than a principal
layers calculation.

(i) Although a generalization to the kj-dependent trans-
port is possible, the approach is inefficient on nonbottleneck,
such as planar, geometries.

(iii) For transport at finite voltage, the effective channels
must be recalculated at each different bias.

Independently, in this work we will also introduce a
physically more intuitive five-partitioned (instead of three)
new quantum transport workbench model (Figs. 2 and 3).
This is composed by the true central conductor device, the
left and right sections of non ballistic leads—which contain
and isolate contact resistance mechanisms—and finally the
ballistic semi-infinite leads. We will derive the exact uncor-
related and correlated conductance formulas associated to the
general workbench where a section of the leads is nonballis-
tic. For the uncorrelated case, we will derive a generalized
Fisher-Lee formula to be associated with the five-partitioned
workbench. For the case of correlated transport we will de-
rive a generalization of the Meir-Wingreen formula to resis-
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FIG. 3. (Color online) Illustration of the five-partitioned work-
bench for a generic 3D quantum transport system, with central de-
vice ¢, nonballistic A, p, and finally ballistic sections L and R of the
leads. f,/, are the contact resistance renormalized lead injection
rates, and g, the Green’s functions of the leads nonballistic sec-
tions N\ and p calculated as they were disconnected from the central
region ¢ and in presence of the external ballistic leads L and R.

tive nanocontacts. In both cases the effect of the contact
resistance is exactly taken into account and contained into

renormalized lead injection rates I and scattering functions

3. The new workbench allows a valuable insight on the
origin of resistance into the system and provides a clear
analysis of the different resistance mechanisms. While in the
principal layers all the resistance is contained in the extended
central region Green’s function G, here, the contact resis-

tance can be directly read from [ and 3O whereas other
more internal mechanisms—i.e. density of states effects,
scattering by impurities or defects, and e-e and e-ph scatter-
ing effects—can be read from the Green’s function G. of the
true central part. The application of the generalized Fisher-
Lee and Meir-Wingreen formulas is not at all restricted to an
effective 1D problem and can be straightforwardly imple-
mented also in a ordinary 3D quantum transport geometry
(Fig. 3). Any actual principal layer code can be modified in
order to refer to the S-partitioned workbench and the associ-
ated quantities. With respect to the principal layers, the five-
partitioned workbench model seems to present only advan-
tages,

(i) It allows a clear analysis of the resistance by disentan-
gling contact resistance from other mechanisms.

(ii) The initial problem is divided into several independent
parts, with reduced calculation cost.

(iii) Tt is very efficient on the effective 1D system.

We will show an application to graphene nanoribbons in
the tight-binding approach.

II. DEFINITION OF EFFECTIVE CHANNELS

Let’s first provide a heuristic approach to the notion of
effective channel. A generic nanoscale quantum transport
system is always characterized by a bottleneck of a few N,
atoms, each contributing with say max N, orbitals. For ex-
ample the bottleneck is represented by a hydrogen atom in
Fig. 1, a nitrogen atom in Fig. 3 and by 6 carbon atoms in
Fig. 4. The conductance of the whole system can never ex-
ceed Nepannels=N,N, quantum of conductance. In the ballistic
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FIG. 4. (Color online) Conductance of a metallic zigzag (5.0)
graphene nanoribbon (left) of length L=2.1 nm connected to
graphene 2D semi-infinite sheets. The zero of the energy corre-
sponds to the charge neutrality point of graphene, i.e., to the Dirac
point.

case the conductance has the characteristic steplike integer
profile (Fig. 4, dashed line), at most summiting to N,N,. In
the other cases, the contact resistance always reduces the
conductance (Fig. 4, continuous line). The bottleneck repre-
sents an uppermost bound. So we can say that there are at
most N,N, channels effectively contributing to the conduc-
tance, the rest being idle. This notion of effective channels
can, thus, be exploited to simplify the problem.

Let’s now find a general condition for a state to contribute
to transport to be used as definition of effective channel. We
consider a quantum transport system separated into a true
central device ¢ (for example “only” the hydrogen molecule
of Fig. 1) coupled to left / and right r contacts. The Hamil-
tonian can be written,

H=H,+H,+H.+H,.+H,+H.,+H,, (1)

where H,., H;, and H, are the Hamiltonians of the central
device, the left and right contacts respectively, and HC,=H}'C
and Hrcszr the coupling of the central device to the left and
right contacts. The absence of direct coupling between the
two contacts is here a fundamental requirement. An electron
must pass across the central device to go from one contact to
the other. We name S, S, and S, the Hilbert spaces of states
of the central device, left and right contacts.

We define the effective channels space of lead t(t=1 or r)
by

S =Span{H"H,|¢.)} V ¢ eS8, VneN.

SfffC S, is a Hilbert subspace of S, containing only the states
coupled to the central device. On the other hand, its orthogo-
nal complement S;" (such that S,=5"'® S}", direct sum) con-
tains only states which are H disconnected both from S, and
Sfff. The application of H to a state of Sf still belongs to S,l.
This means that an electron from the reservoir ¢ but in a state
belonging to S;", will stay and evolve in S;- without contrib-
uting to a current across the central device. The calculation
of the conductance is not affected by S,l that can be safely
neglected. Thus the conductance of the real system is that of
a simpler effective system living into S°, defined

SEff=Sleff+SC+S§ff. (2)
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FIG. 5. (Color online) Convergence of the 6(i=1 ,...,6)a£l ei-
genvalues of the matrix A as function of the iteration n.

III. ONE-DIMENSIONAL EFFECTIVE SYSTEM

The next step is to demonstrate the existence of this ef-
fective system by a correct choice of its basis. In practice we
will provide a Gram-Schmidt or, equivalently, a Haydock
recursion'! algorithm to build an orthonormal basis set {s,}
for S°T, The representation H*'" of the original Hamiltonian
on {¢,} will result at the same time.

To start with, let’s restrict to the simplest (scalar) case as
in Fig. 1 where the central bottleneck is a single atom with a
single orbital, say ¢,. Let’s first build the right Sﬁ“ effective
channel space and its basis set {i,}. The first element ¢, of
the basis is given by b,|i,)=H,.|¢,). b; is chosen as normal-
ization factor for ;. Next we calculate a,={i/,|H,|i,). We
then calculate the second element by b,|in)=H,|¢)—a;|i).
i, is orthogonal to ¢ and normalized by b,. At the next and
all the following steps we iterate the same procedure, a,

=<¢n|Hr| lr//n> and bn+1|lzbn+l>:Hr|l//n>_an|(//n>_b:;|lrlln—l>' This
is an implementation of the standard recursion method,"

Hr|(v[/n>:an|lr/jn>+b:|'lfn—l>+bn+l|lrlfn+l>' (3)

In conclusion, we end with an orthonormal basis {¢,} for
Sf“. With increasing n, the state ¢, is a linear combination of
real orbitals belonging to atoms deeper and deeper in the
contact.!! The recursion can be stopped at an n=N where the
coefficients a,, b, saturate and converge to an asymptotic
regime, d.., b, (see Fig. 5). From this point the leads are
consequently ballistic and associated to states achieving a
maximum spread into the contact region. Notice that this
practically and numerically recovers the Landauer’s para-
digm of reservoir,1 initially formulated as an ad hoc hypoth-
esis. On this basis set the Hamiltonian is tridiagonal, with
onsite H*'=4, and (only) first neighbours hopping coeffi-
cients Hffﬁ_lzbn. It can be seen as associated to an effective
1D pseudoatomic chain (Fig. 1). H" is in fact the same
original Hamiltonian but represented on an orthonormal ba-
sis where it is tridiagonal. Notice that the algorithm does not
require to store the basis elements ¢, but just only the a,
and b, coefficients on the basis (see Appendix A).

The procedure can now be repeated for the left / contact
({#,,},n<0). And it can be generalized to the matrix N,N,
#1 case (see Appendix A 2). In this case a, and b, are
replaced by block matrices A, and B, of size N,N,. The
Hamiltonian still owns a 1D structure but it is now tridiago-
nal by blocks in the recursion basis,
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N N
HT=H.+ X A,+ 2 (B,+B)). (4)

n=-N n=-N

Finally, we would like to mention the existence of works
(Refs. '>717) presenting analogies or further reading with re-
spect to the framework, the recursion methodology, or the
basis set introduced here.

IV. GENERALIZED FISHER-LEE FORMULA

We now focus on the calculation of the conductance of
the effective 1D system. The principal layers approach would
reorganize the system into 3 new regions (Fig. 2 top): a left
ballistic lead region L where a, saturates to the constant
asymptotic value a_.,; a right R ballistic lead region a,.; and
an extended central region C containing the true central de-
vice ¢ and also the two nonballistic sections of the leads, n
=1,...,N and n=-1,...,-N. Referring to this standard
workbench, we can calculate the Green’s function g; and g
of the semi-infinite periodic leads, the associated self-
energies X, =Hc g, H; ¢, 2r=HcrgrH;r and the injection
rates I';, I's. We can then calculate the retarded/advanced
Green’s function GrC/“ of C in presence of the leads L and R
by Ge(z)=(z—=Hc—-2;-2x)"". The conductance is then cal-
culated by the standard Fisher-Lee formula,

2
€@ = XTI QGHET GG (5)

The drawback of this procedure is twofold. On one hand
there is no way to analyze separately the role of the true
central device and of the nonballistic part of the leads. On
the other hand the size of the matrix G(z) can increase rap-
idly and the matrix inversion can become difficult or impos-
sible, even for a tridiagonal Hamiltonian. This restricts the
applicability of the method to systems where the resistance is
localized at the very vicinity of the nanocontacts.

In this work, we instead propose to keep the original natu-
ral separation into true central region ¢ and the leads / and r.
Into / and r we identify the ballistic regions L and R and the
nonballistic sections \ and p (Fig. 2 bottom and Fig. 3). By
using the projector P. on ¢, we single out the Green’s func-
tion of the true central device G.=P ,G-P,.. We then define
the Green’s function g, =[z—P)(Hc+2;)P\]™" (a similar ex-
pression for g,). This is not the projection of the propagator
into the section N, g\ # G\=P,GcP,. Instead it is the propa-
gator in the section N\ calculated as if A were disconnected
from the center ¢ but connected to L. Injecting these defini-
tions into the Fisher-Lee Eq. (5) and using some fundamental
projector relations,'® we get at (see Appendix B 4)

2

2 ~ -
C(z)= fTr[Fz(z)GZ(Z)Fr(z)Gi’.(z)], (6)
where
['(2) =H.8\ QT (&)
I‘:r(z) = Hc'rgg(Z)FR(Z)g:l)(Z)Hrc" (7)
and
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GCZ(Z—HC—E)\—EP)_I, (8)
S\ =Hg\()H,,.

S,=H.,Z,)H,. 9)
Formula (6) has a Fisher-Lee like form but involves different

quantities (for instance I'), # i[i;/p— ~i/p]). It now refers to a
workbench where the Green’s function G, of the extended
central region is replaced by the more significative Green’s
function G, of the true device under study. The injection
rates I';, of ballistic leads are replaced by contact resistance

dressed renormalized injection rates f,/,, which refer to both
the ballistic L/R and the non ballistic N/p sections of the
leads. In the principal layers approach all resistance mecha-
nisms are localized within the extended central region C and
considered in G.. Here, contact resistance is separated from
other mechanisms, localized in the nonballistic sections A

and p and transferred into " where it is taken into account
via g. The contact resistance can be read directly from I.As

we will see in the example, if f(E):O at a given E, this will
provide 0 conductance whether or not there is at £ an avail-
able channel in the central device. Therefore the generalized
Fisher-Lee formula allows a more clear interpretation of re-

sistance mechanisms. Notice that the l:l/, depend only on the
electronic structure of the contact and on its coupling to the
central device. Thanks to recurrence relations the calculation

of the 1D g and hence of T' can be carried out in a very
efficient numerical way (see Appendix B 4) with respect to
the principal layers approach where the calculation of G can
be cumbersome. Moreover, the generalized Fisher-Lee for-
mula is not restricted to the 1D-effective theory presented
here. It can be applied also to real 3D systems, in place of the
ordinary Fisher-Lee, provided the extended central device is
split into two nonballistic leads regions and the true central
device (Fig. 3). One might think for example about a mo-
lecular junction where our formula could be used to project
the whole transport problem into molecular orbitals.

V. EXTENSIONS TO NEGF AND CORRELATED
TRANSPORT

The 5-partitioned workbench is particularly convenient in
the case of correlated transport within NEGF. Starting from
the Meir-Wingreen formula' for the current, the noncoherent
term can be separated from the coherent. For the coherent
term we end again to the generalized Fisher-Lee Eq. (6). For
the noncoherent current we can derive a generalized Meir-
Wingreen expression of the form,

e ~ ~
roneoh = ;lTr[EfGZEfmGZ -37G35.G, (10)

where 3¢/

o are the in/out scattering functions related only to

correlations (e-e or e-ph), while i§> are the in/out contact

resistance renormalized lead t scattering functions, 3,(z)
=H,gX2)21(2)g'(z)H,., with 2(z) calculated in the ballistic
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region (see Appendix B 6). Notice that fﬂﬁ fT, with ST de-
fined in Eq. (9). The equilibrium relations =~ =/"T, and
Sf:(l —"D)T, (as well as f,=[§,>—§,<]) still hold also for
the renormalized quantities. Contact resistance is now physi-

cally separated into i, with respect to the resistance raising
from e-e and e-ph scattering mechanisms, associated and lo-
calized into the true central device and G.. This more faith-
fully represents the workbench ideal assumption of lost-of-
coherence effects only within the true central device, with
leads assumed as everywhere perfectly coherent.

VI. APPLICATION TO A GRAPHENE NANODEVICE

The method has been implemented into a computer code?!
and was applied to graphene nanoribbons coupled to
graphene sheets?>?® using a tight-binding electronic struc-
ture. As shown in Fig. 4 and in Ref. 20, the conductance
exhibits Fabry-Perot oscillations shorting even to some 0s
close to E=0. Although the nanoribbon is metallic [A.(E
=() # 0] the transmission of electron waves across the con-
tact is blocked at these energies. It can be shown that the

renormalized f,(E) is zero at those points, whereas I'; keeps
finite. Thank to the new formalism, our analysis shows that
the 0 conductance is a pure effect of contact resistance and it
can be interpreted as a diffraction effect at the contact con-
striction (see Ref. 20). Notice the high accuracy of the cal-
culation: the maxima of the Fabry-Perot oscillations, in prin-
ciple exactly equal to 1, are found equal to 1+ 1073~ 107,
Furthermore, at difference with respect to the principal layers
approach as implemented, e.g., in WanT?? or other codes, the
conductance as function of the energy does not present spu-
rious structures and spikes shorting to 0. Notice also the
straightforward, well defined and reliable convergence crite-
rion. In Fig. 5, we show the typical convergent behaviour of
the a,, coefficients as function of the iteration n (the 6 eigen-
values of the A, matrix in the present case). The code auto-
matically checks the convergence and stops the recursion
when |a,,—a,_;| < 6E and then calculates the conductance. To
get the 1073 eV accuracy we needed n=600 iterations. The
case studied is however one of the most unfavourable, due to
a divergence of the electron wavelength at E=0. We expect a
much quicker convergence for less critical systems, where
contact resistance is localized closer to the nanocontacts.

VII. CONCLUSIONS

We have introduced a formalism for quantum transport at
resistive nanoscale contacts which relies on the introduction
of an effective 1D system and its associated 5-partitioned
workbench model. Moreover, we generalize the Fisher-Lee
and the Meir-Wingreen formulas to the case of nonballistic
contacts. The formalism is physically more intuitive and nu-
merically more efficient than the standard principal layer ap-
proach. By its versatility and its theoretical generality, our
formalism allows to handle unexplored quantum transport
problems, like the exact influence of the experimental con-
tact geometry. From a more fundamental point of view, our

PHYSICAL REVIEW B 81, 155422 (2010)

work offers new perspectives to discuss the existence of Lan-
dauer’s reservoirs for real systems.
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APPENDIX A: MAPPING INTO THE EFFECTIVE 1D
SYSTEM AND MATRIX RECURSION

1. Construction of the block spaces

Let us use the convention where the recursion into the
right terminal #=r is indicated by positive recursion indices
n>0, while for the left contact =/ by negative indices n
<0. Let us define the space S,

Se = Span{Hrc|¢c>}’ V d)c € SC’

(a similar expression holds for S°'=Span{H,|¢')}). The ap-
plication of H, to Se generates states that can be decom-
posed on Se itself and on an orthogonal space that we name
Seff Successwe application of H, to states of Se generates
states that can be decomposed on Se”, Seff and a new or-
thogonal space SEff In general, apphcatlon of H, to Seff gen-
erates states that can be decomposed on Seff . Se and a new

n—

orthogonal space Sflifl Indeed the Hermicity of H, prevents
the coupling between spaces that are not successive order.

The effective spaces for the left and right terminals are
hence given by

Ser:ff= U Ssz’ S?ff= U Sflff~
n>0 n<0

Let us now define the orthogonal projector P, P P
the space S*. A,=P,HP, is the restriction of the Ham11—
tonian H to the space S and B,=P,HP,_, represents the
coupling from S| to Se¥ The coupling from S to ST, is
given by BZ. One can see that

H,=2 A,+ 2 (B,+B)), (A1)
n>0 n>1
Hy=2 A,+ 2 (B,+B)), (A2)
n<0 n<-1
and
H,.+H. =B, +B], (A3)
Hy+Hy=B_ +B,. (A4)

Therefore the Hamiltonian restricted to the effective space
SH=8"+S,+S™ can be written:

N N
H"=H.+ > A,+ > (B,+B). (A5
n=-N,n#0 n=—N,n#0
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2. Matricial recursion

In the general case the subspace spanned by H,.|¢.) with
¢, any orbital in the central device, is of dimension N,N,,
that is the characteristic dimension associated to the smallest
bottleneck in the central device. In principle, we can start the
recursion from the bottleneck itself by finding N,N, linearly
independent states ®.(i) with i=1,...,N,N,. In any case, the
dimension of S5 or S, as well as all successive spaces St
is strictly upper bounded by N,N,. The application of the
first iteration recursion step leads to N,N, linearly indepen-
dent states, say W,(i) with i=1,...,N,N,. The same for all
successive iterations, W, (i). Then a, and b, are replaced by
matrices A, and B, of dimension N,N,." The recurrence
relations have an analogous form. We consider here the case
for the right terminal r and the positive recursion n>0. The
projector on the subspace Sfff can be written as

P, = 2 (W, (D)W, (). (A6)

Then one get from Eq. (Al):
H W) = 2 [A,G)Y,(0)) + B0 1 (7)) + B (1)
j

X[, (], (A7)
with
<\I,n(l)|\ym(.])> = 5n,m5i,j,
except for n=0 |Wy(i))=0, (A8)
and
A (i.)) = (¥, () HW (7)), (A9)
Bys1 (i) = (¥, (D H|W, (/). (A10)

The procedure to compute the matrices A, and B,, is quite
similar to that of the scalar case. At step n one knows A,, and
B, for all m<n. One stores also the components of |¥',)
and |W,_,) in the real space basis.

Then A, (i,]) is calculated from Eq. (A9). One then com-
pute the components in the real space basis of |V, (),

|\I,r’1+1(l)> = E Bn+1(j’ l)|q,n+1(.])> = Hr|q,n(l)> - E [An(]»l)
J J

X|W,(j)) = B (i)W, ()], (Al1)
with the overlap matrix
S (i) = (W D41 ()) = (BL, B i) (00).-
(A12)

Once the overlap matrix S, (i,/) is calculated, we can con-
struct the orthonormal basis of the W, ;(j) states whose com-
ponents on the basis of the W/, (j) states are given, as well
as of course on the real space basis. Once the V¥, (j) states
are calculated, B, ,(i,j) is calculated from Eq. (A10). We
then pass to the next step of recursion.

There is a freedom on the choice of the orthonormal basis
of the subspaces S, which is generated by W,,,(j) for all

n+l°
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J» or equivalently by W¥,,,(j). Indeed the matrices A, and
B,,Bl are defined up to a unitary transformation which de-
pends on the precise choice of the vectors W, (i). This unitary
transformation is equivalent to the freedom in the choice of
the phase of the b, coefficients in the scalar case.

The most time consuming part is the computation of the
Hamiltonian of the effective 1D system. This amounts essen-
tially to compute 2N,N,, scalar recursion procedures, where
N,N, is the dimension of the spaces Sflff corresponding to the
size of the blocks of the tridiagonal Hamiltonian H°. Since
the only operations done on the real space basis are scalar
products, the whole procedure exactly scales linearly with
the size of the initial Hilbert subspace. That is, the proposed
algorithm is an O(N) method. Once the Hamiltonian Egq.

(A1) is computed, the calculation of the operators I (z) and
f,(z) is relatively fast.

APPENDIX B: DERIVATION OF THE GENERALIZED
FISHER-LEE AND MEIR-WINGREEN FORMULAS

In this appendix, we present two different schemes of
derivation for the generalized Fisher-Lee and Meir-Wingreen
formulas. The first scheme is an ordinary matrix derivation,
while the second uses projector techniques.

1. From the three- to the five-partitioned workbench

The original Hamiltonian Eq. (1)

H He 0
H= Hcl Hc Hcr ’ (Bl)
O HrC Hr

is written in the physically intuitive /—c—r three partition of
the system, with ¢ the true central region, and / and r the
external leads containing both ballistic and non-ballistic sec-
tions

In the principal layers approach, the Hamiltonian is di-
vided differently and is rewritten as

H, He O
H=\Hc, He Heg |,
0  Hge Hg

that is using a different L—C—R 3-partitioned scheme where
the system is divided into left and right ballistic leads L and
R, and a central extended region C that now contains the non
ballistic sections of the leads. The associated Green’s func-
tion is

Gr Grc Grr

G=|Gea Ge Ger |,

Gr. Gre Gr
and we use the ordinary principal layers formulas to calcu-
late the conductance (T'=L or R):

8r= (Z_HT)_13

2r= HergrHres
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Ge=(@-He=-3,-3p)7",
Lr=i[27-27],

2¢?

C= TTr[FLGrCFRGaC] (B2)

Starting from the principal layers scheme, we now divide
C in 3 subsections: the left nonballistic lead section A, a true
central region ¢ and a right nonballistic lead section p (see
Fig. 2 and 3). Referring back to the /—c—r scheme, 1 is the
left lead comprising both the ballistic L section and the non
ballistic section A, and r is the right lead comprising both the
non ballistic section p and the ballistic section R. We end it
up with a five-partitioned system L—\—c—p—R (see Fig. 3)
and the associated Hamiltonian

H=| 0 H, H, H, O
0 0 H, H, Hy
0 0 0 Hg Hg

Comparing with the original Hamiltonian Eq. (B1) we see
for example that

Hcl = (0 Hc)\)’

and so on, so that in the next we will confuse H., with H,.,
(t=1 or r and 7=\ or p), whenever it is clear from the context
in which space we are working. In principle we start from the
principal layers approach and we will be always working in
the space C.

The extended central Green’s function G is rewritten in
its A—c—p components:

Gy Gy Gy
GC= Gc)\ Gc ch
Gy G, G

p

p

The injection rates I'; and 'y, which live in the C space,
have non-zero elements only in the regions \ and p, respec-
tively, and are of the form

I, 00
r,={0 0o}, (B3)
0 00
00 0
Te={0 0 0|, (B4)
00T

like also X; and 3.

2. Generalized Fisher-Lee formula

Starting from the ordinary Fisher-Lee formula referring to
the principal layers approach and the L—C—R workbench,
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2¢? 2¢? . .
C= 7T= TTT[FLGCFRGc]’

using Egs. (B3) and (B4), we rewrite T as
T=TiI'\G} I',Gp\]- (B5)

G), and G, are determined expliciting Eq. (B2) on the A
—c—p scheme,

H,+2, H,, 0 G, Gy Gy,
z— H,\ H, H., 1 G G, ch =1.
0 H, Hp+2p G G, G,
From
(Z_H)\_E)\)G)\C_H}\CGL‘:O’
—HPCGC+(z—Hp—EP)GPC=O,
_HL')\G)\C + (Z _HC)GC_HC;JG/JC= 1,
we get

G\.=8\H\.G.,
Gpc = ngpch’

GC= (Z_Hc_i}\_ip)_l’
where we have defined

S=(-H, -3,
§p= (Z_ Hp_ Ep)_l7
2\ =H)\g\H,.,

S, = Ho o8 H. (B6)

Notice that g.# G, (where 7=\ or p). The g, can be physi-
cally interpreted as the Green’s function of the non-ballistic
lead section 7 (see Fig. 3) as disconnected from the central
region c¢(H,.,=H,.=0) but in contact to the ballistic lead re-
gion T and under the effect of its 2, (3,).

Now from
(z=Hy\-2,)G),-H,G,.,=0,
_Hpch)\+ (Z_Hp_zp)Gp)\:O’
(Z_H)\_E)\)G)\_H)\ch)\: 1,
—Hpchp"‘ (z—Hp—Ep)sz 1,
we get

G, =8\H\.G (B7)

cp?
Gp}\ = ngpch}\ ’

Gy =g\ + & H\Gos
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G,=8,+8,H,Gp- (B8)

And finally from
- HL')\G)\ + (Z - HL')GL')\ - Hchp)\ =0,

- c)\G)\p+ (Z—HC)GCP—HCPGP=O,

we get

Gc)\ = Gch)\g)\’

GL'p = Gchpngr
which replaced into Egs. (B7) and (B8), provide

G)\p = g~)\H)\chHcpg~p

Gp)\ = ngpc'GcHC')\gh >

that we can finally insert into Eq. (B5) to get the transmit-
tance

T=Ti[I'\g\H\.G.H. pg;F pgf)H pcGeH 8]

= Tr[chg;J\F)\g;H)\cGzHcpg,r)FpngpcGZ] .
Defining the contact resistance dressed renormalized lead in-

jection rates L,

1:lz Hc)\g';\FLg;\H)\c’ (B9)

[,=H,Z g H,. (B10)

we get the final result for the generalized Fisher-Lee formula

T=Ti[T,G'T,G].
Finally we notice that
I # 4[5 - 51,
as it can be checked from the definitions Egs. (B10) and
(B6). We can however define a new 3,# 3 |

Et = HCng'ETg:HTc

such that the relation
ft = l[§; - ita]v
holds.

3. Fundamental relations for the resolvant

We now present the projector methodology developed by
Zwanzig and Mori'® that we will use later to provide a dif-
ferent derivation of both the generalized Fisher-Lee and
Meir-Wingreen formulas. We will first rederive some funda-
mental relations that we will use in the next sections. Let’s
consider a space P and its associated projector P. Let’s de-
fine also its complementary Q, that is the projector associ-
ated to the complementary space Q. By their definition, the
following relations hold for P and Q,
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P+0=1,
P’=P,
0’=0,

PO=0QP=0.

We now consider a not necessarily Hermitian operator H
(which can even depend on z although we will drop in the
following this dependence) and its associated Green’s func-
tion G(z)=(z—H)~'. Starting from the identity

(z-H)G=1,

and multiplying from the left by P and from the right by Q,
we get the relation

P(z—H)GQ=PQ=0.
We now insert the identity operator (P+Q),
0=P(z-H)(P+Q)GQ=P(z-H)PGQ + P(z- H)QGQ
=P(z- HPPGQ - PHQGQ,
and we finally arrive to the fundamental projector relation
PGQ =[P(z- H)P]'PHQGOQ. (B11)
Starting from the identity
0G(z-H)P=0,
we arrive to the other Zwanzig-Mori projector relation

OGP =QGQHP[P(z- H)P] ™. (B12)

4. Generalized Fisher-Lee formula by the projector
scheme

With respect to the A —c—p regions scheme, we define the
projectors P\, P., and P, which undergo the following rela-
tions

P\+P.+P,=1, (B13)
0\=P.+P, (B14)
Qp=P\+P,, (B15)

O\P,=P,, (B16)
0,P\=P,. (B17)

For a tridiagonal Hamiltonian H. (here we use the conven-
tion to include into H. not only the Hamiltonian H . associ-
ated to the region C, but also the lead L and R self-energies,
H_=H+2%;+2p), the only nonzero crossed terms are

H,.=P\H_P,, (B18)

HC)\=PL.H£:P)\, (Blg)
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H.,=P.H:P,, (B20)
HPC=PPH’CPC, (B21)
while the only nonzero I' elements are
FL=P)\FLP)\=F)\, (B22)
FR:PpFRPp:Fp' (B23)

We now start from the ordinary Fisher-Lee formula refer-
ring to the principal layers approach and the L—C—-R work-
bench,

2¢? 2¢? , »
= TT = TTr[FLGCFRGC] .

We rewrite the transmittance 7 using Egs. (B22) and (B23)
T=Ti P\l P\G P,z P,GL].

Using the cycling property of the trace,
T=Til P G P,IxP,GLP,],

and the projector properties Egs. (B16) and (B17), we arrive
to

T= Tr[FL{P)\GE'Q}\}PpI‘R{PpG%Qp}P)\]'
Now we use the Zwanzwig-Mori relation Eq. (B11)

T=TiI{[P\(z —HIC)PA]_IP)\H,CQAGchx}PpFR

X{[P,(z=Hp)P,I ' P,HQ,GEQ P]. (B24)

We now define the Green’s functions g,
& =[P\(z-Hp)P T, (B25)
g,=[P,(z—HOP,I™". (B26)

Notice that g, # P\(z—H()"'Py and §,# P,(z—H()™'P,,. The
2\(g,) can be physically interpreted as the Green’s function
of the nonballistic lead section N\(p) (see Fig. 3) as discon-
nected from the central region ¢ but in contact to the ballistic
lead region L (R) and under the effect of its 2,; (). Replac-
ing the definition Egs. (B25) and (B26) into Eq. (B24), we
get at

T= TT[FIE;\P )\Hé‘Q}\GrCQ)\P erg’ZP pHéQp ((lprP NE

Developing Q) and Q, according to Egs. (B14) and (B15)
and using Eqgs. (B18) and (B21) for H,. and H,,., we get

pe
T= Tr[rLgf\chP cGrcP ergapHpCP cGacP NE
Using the projector relations P.=P.Q, and P.=P_.Q,,
T= Tr[FLgN;\HMP C{QpGrCP p}ngapHpcP c{QxG%P NiB
and the Zwanzwig-Mori relation Eq. (B12), we get
=TT, 8\ H\P{Q,GeQ,HP [ Py(z~ HOP, ™'}
XTr&5H ,.P{O\GEO\H P[P\ (z — HO) P\ ']

Using again the definition the Green’s functions g and the
project relations,
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T= Tr[FLgN;\H)\LPcGE’PcHéPpg;r)FRgZHpcPLG%PCH,CP)\g(;\]7

and the definitions of H, and H,, Egs. (B19) and (B20), we
get

T= Tr[FLg)r\H)\cPcGrCPchpglr)ngZHpcPCG%PCHC)\g()l\] .

We now define the projection G, of G into c,

G.,=P.GcP.=P.(z—-H.)'P,, (B27)
=P(z-H.-5,-3)7'P,, (B28)
where
H.=P.HP,, (B29)
SA = Hc)\ng)\cs (B3O)
S, = Hop8 H e (B31)
So to get

T'=Ti[l', 8\ H\ G Hep8p U rEH o G HE]-
With a final cycle of the trace,
T= Tr[Hc}\g?\FLg;\H)\cGZHcpg,r)FRngpcGg] >
and defining the contact resistance dressed renormalized lead

injection rates I’,

)= HoZ\L 18\ H» (B32)

[,=H.& T xgH,.. (B33)

where the generalized f,,, contain the ballistic leads injection
rates ',z plus some other ingredients physically containing
contact resistance. We finally get the generalized Fisher-Lee
formula

T=TiT,G'T,G].

5. NEGF fundamental relations

We use Kadanoff and Baym?® notations where correlation
and scattering functions e >,2<> are defined Hermitian. Let’s
recall the fundamental relations

[=iX-39)=3"+3", (B34)

A=i(G'-GY=G"+G". (B35)

In steady-state NEGF, we have two more dynamical equa-
tions to get G and G~

G~ =G"2"G", (B36)

G”=G">"G", (B37)

where 3, is
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2= Ecorr"' E ET’ (B38)
T

a sum over the leads T (T=L or R in case of two terminals)
and the correlation 3. 37? js the correlation retarded/
advanced self-energy or the in/out scattering function. For

ballistic leads T at equilibrium with their reservoirs one has

S7(E) = fP(E)T({E), (B39)

S7(E)=[1-fE)THE),

where I'; is the injection rate of the considered ballistic lead
T. f‘;D (E) is the Fermi-Dirac distribution of the reservoir con-
nected to the ballistic lead under consideration. We also re-
mind the relation

(B40)

=G TG =GTG". (B41)

6. Generalized Meir-Wingreen formula

The correlation self-energy acts only in the true central
device ¢, since one assumes that there are no interactions in
the leads (ballistic and nonballistic parts). Therefore, we

have the following identity
PczcorrPc = 2corr’ (B42)

while, as before, for the considered terminal 7=L or R; T
=p or A we have

PTETPTz 2T~

We introduce again the projectors

(B43)

P.+P.+P.=1,

where P, projects on the frue central device ¢ and P, and P
project on the non ballistic part of the leads. We also intro-
duce the conjugated projector

Q'rzl_P

The Meir-Wingreen formula for the current i;dE that en-
ters in the central device through the terminal 7 per energy
interval dE, is

ip= %Tr[zicg ~376G7]
%Tr[ETGCE>G“ S7GLSSGY).

ir can be divided into the coherent and noncoherent parts,

-.coh |, .ncoh

ir=ip" +ip, (B44)

where the noncoherent part of the Meir-Wingreen formula is
defined

i = T (376G =~ 37 G2enGel.  (B4Y)
while, using the fundamental relations of NEGF, the coherent
part can be written
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i = —Tr[rTG’rT,G 15 = £, (B46)

for the specific case of two terminals 7 and 7". f;° is the

Fermi-Dirac distribution of lead T (always at equilibrium).

The latter can be recognized as the ordinary Fisher-Lee for-
mula when associating 7=L and 7" =R,

e

= ZTr[FLG’CI‘RG“C](fED -2, (B47)

To generalize the Meir-Wingreen formula we refer again

to the /—c—r scheme and the associated quantities, the

Green’s function of the frue central device and the renormal-

ized injection rates of the leads. The derivation for the gen-

eralized Meir-Wingreen formula proceeds separately on the

coherent and the noncoherent part. For the coherent part, the
derivation gets back to the generalized Fisher-Lee formula:

coh

=-Ti[[,G'T, GUAAP - ). (B48)

¢

h
For the noncoherent part, we start from Eq. (B45). Let’s

for the moment consider only the first term of Eq. (B45),

T, =Ti3;G2,.Gel.
Using Egs. (B42) and (B43), we get
T, =T P3;P.G-P3, .P.GE],
and cycling the trace and using projector properties
=T 27{P.GOIP3,.PAQ.GLP .

We now use the Zanzwig-Mori relations Eqgs. (B11) and
(B12), and the definition of the g, Green’s function Eq.
(B25), so to get

Ty =Ti37§,PHcQ,GeQ P2 0P Q,GeOHeP . F3.

Now using the definition of H,. and H,, Eqgs. (B18) and
(B19),

T, = Tr[z;gT:HTcPLGrCP 2> P G%PCHCTRZ]’

corr
and the definition of G. Eq. (B27),

Ty =Ti3; 8 H,.G32,,GiH. 22,
we get, after cycling of the trace, at

Ty = T H, &85 §H G35, G,

We now define the renormalized lead injection rates,

S, =H. g5 8 H,, (B49)

so that T reduces to

T, =Ti3 G3..GY.

When considering also the second term in Eq. (B45), we get
finally at our generalized Meir-Wingreen formula,

nLoh

S > AN < a
Iy 2 ECOITGC

T3 G'>. G-

corr = ¢

€
h
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